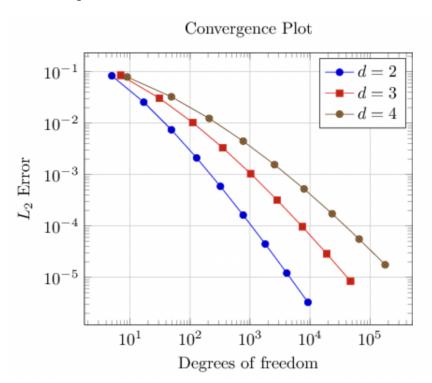
Les objectifs du chapitre

Contenu

- Produit de puissances de dix
- Quotient de puissances de dix
- Puissances de puissances de dix
- Puissance d'exposant négatif
- Notation scientifique

Capacités attendues

- Manipuler des puissances de dix
- Transformer une puissance de dix en écriture décimale
- Transformer un entier relatif en puissance de dix
- Obtenir l'écriture scientifique d'un nombre



I Puissances d'exposant positif

Définition 1 : puissance de dix à exposant positif

Soit *n* un nombre entier **positif** non nul.

$$10^{n} = \underbrace{10 \times 10 \times \dots \times 10 \times 10}_{n \text{ facteurs tous égaux à } 10} = 1\underbrace{00 \cdots 00}_{n \text{ zéros}}$$

- ➤ 10^n se lit "10 exposant n" ou "10 puissance n"
- $ightharpoonup 10^n$ est la **puissance** n-ième de dix et n représente son **exposant**
- ightharpoonup Par convention $10^0 = 1$

Exemples

- $ightharpoonup 10^3 = 10 \times 10 \times 10 = 1000$
- $ightharpoonup 10^1 = 10$
- $(-10)^2 = (-10) \times (-10) = 100$

- $-10^2 = -10 \times 10 = -100$
- $ightharpoonup 10^6 = 1\,000\,000 \,(\text{un million})$
- $ightharpoonup 10^9 = 1\,000\,000\,000\,\text{(un milliard)}$

Méthode 1 : transformer un produit en une seule puissance de dix

Écrire les produits suivants sous la forme d'une puissance de dix.

- **1** $A = 10 \times 10 \times 10 \times 10 \times 10$
- **2** $B = -10 \times 10 \times 10 \times 10 \times 10 \times 10$
- **3** $C = (-10) \times (-10) \times (-10) \times (-10) \times (-10) \times (-10)$

Corrigé

- A= $10 \times 10 \times 10 \times 10 \times 10 = 10^5$ car le facteur 10 apparaît cinq fois.
- **2** B= $-10 \times 10 \times 10 \times 10 \times 10 \times 10 = -10^6$
- **3** $C = (-10) \times (-10) \times (-10) \times (-10) \times (-10) \times (-10) = (-10)^6$

Méthode 2 : transformer une puissance en entier relatif

Écrire chacun des nombres ci-dessous sous la forme d'un entier relatif.

- **1** $D=10^4$
- **2** $E=(-10)^4$
- **6** $F = -10^4$

Corrigé

- **1** D= $10^4 = 10 \times 10 \times 10 \times 10 = 10000$
- **2** $E = (-10)^4 = (-10) \times (-10) \times (-10) \times (-10) = 10 \times 10 \times 10 \times 10 = 10000$ Le signe "—" apparaît quatre fois, donc le produit est positif!
- **3** $F = -10^4 = -10 \times 10 \times 10 \times 10 = -10000$

Le signe "—" n'apparaît qu'une seule fois, donc le produit est négatif. Attention au rôle des parenthèses! $(-10)^4 \neq -10^4$

II Puissances d'exposant négatif

Définition 2 : puissance de dix à exposant négatif

Soit n un nombre entier positif non nul.

$$10^{-n} = \frac{1}{10^n} = \underbrace{\frac{1}{10 \times 10 \times \dots \times 10 \times 10}}_{n \text{ facteurs tous \'egaux \`a 10}} = \underbrace{0,0 \cdots 00}_{n \text{ z\'eros}} 1$$

Exemples

>

$$10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0,01$$

>

$$10^{-1} = \frac{1}{10^1} = \frac{1}{10} = 0,1$$

III Calculer avec des puissances de dix

Dans certains cas, il est possible de simplifier des calculs dans lesquels interviennent des nombres écrits sous forme d'une puissance de dix.

1. Multiplier des puissances de dix

Exemples

>

$$10^{4} \times 10^{2} = \underbrace{10 \times 10 \times 10 \times 10 \times 10}_{\text{six facteurs tous égaux à 10}} = 10^{6} = 10^{4+2}$$

>

$$10^{5} \times 10^{3} = \underbrace{10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10}_{\text{buit facteurs tous égaux à 10}} = 10^{8} = 10^{5+3}$$

On a additionné les exposants.

De manière générale, on a la règle du produit qui suit.

Propriété 1 : produit de deux puissances de dix

Soient n et p deux nombres entiers relatifs. On a

$$10^n \times 10^p = 10^{n+p}$$

En itérant cette propriété, on peut calculer le produit de plusieurs puissances de dix.

Exemples

>

$$10^3 \times 10^{15} \times 10^{-12} = 10^{3+15+(-12)} = 10^{18-12} = 10^6$$

>

$$10^{-3} \times 10^{11} \times 10^{-7} \times 10^{13} = 10^{-3+11-7+13} = 10^{14}$$

2. Diviser des puissances de dix

Exemples

>

$$\frac{10^3}{10^4} = \frac{10 \times 10 \times 10}{10 \times 10 \times 10 \times 10} \frac{1}{10} = 10^{-1} = 10^{3-4}$$

>

$$\frac{10^5}{10^2} = \frac{10 \times 10 \times 10 \times 10 \times 10}{10 \times 10} = 10^3 = 10^{5-2}$$

On a soustrait les exposants.

De manière générale, on a la règle du quotient qui suit.

Propriété 2 : quotient de deux puissances de dix

Soient n et p deux nombres entiers relatifs. On a

$$\frac{10^n}{10^p} = 10^{n-p}$$

Exemple

$$\frac{10^3}{10^{-5}} = 10^{3-(-5)} = 10^{3+5} = 10^8$$

3. Puissance de puissance de dix

Exemple

$$(10^5)^4 = \underbrace{10^5 \times 10^5 \times 10^5 \times 10^5}_{quatre\ facteurs\ tous\ égaux\ à\ 10^5} = 10^{5+5+5+5} = 10^{4\times5}$$

On a multiplié les exposants.

De manière générale, on a la propriété suivante.

Propriété 3 : puissance d'une puissance de dix

Soient n et p deux nombres entiers relatifs. On a

$$(10^n)^p = 10^{n \times p}$$

Exemples

>

$$(10^{-3})^4 = 10^{-3 \times 4} = 10^{-12}$$

>

$$(10^{11})^{34} = 10^{11 \times 34} = 10^{374}$$

Méthode 3 : transformer une expression algébrique en puissance de dix

Écrire le nombre suivant sous la forme d'une seule puissance de dix.

$$A = \frac{10^{-1} \times (10^3)^{-2} \times 10^5}{10^{-4}}$$

Corrigé

On a

$$A = \frac{10^{-1} \times (10^{3})^{-2} \times 10^{5}}{10^{-4}}$$

$$A = \frac{10^{-1} \times 10^{3 \times (-2)} \times 10^{5}}{10^{-4}}$$
 (propriété 3)
$$A = \frac{10^{-1} \times 10^{-6} \times 10^{5}}{10^{-4}}$$

$$A = \frac{10^{-1-6+5}}{10^{-4}}$$
 (propriété 1)
$$A = \frac{10^{-2}}{10^{-4}}$$

$$A = 10^{-2-(-4)}$$
 (propriété 2)
$$A = 10^{-2+4}$$

Il en résulte que

$$A = 10^2$$

Méthode 4 : écriture décimale d'une expression algébrique

Donner l'écriture décimale du nombre $B = 2 + 3 \times (6 + 4)^4$.

Corrigé

Il s'agit de respecter les priorités de calcul dans cet ordre : parenthèses, puissance, multiplication et enfin addition.

Ainsi,

$$B = 2 + 3 \times (6 + 4)^4 = 2 + 3 \times 10^4$$
$$B = 2 + 3 \times 10000$$
$$B = 2 + 30000$$

Par conséquent,

$$B = 30\ 002$$

IV Notation scientifique d'un nombre

Définition 3 : notation scientifique d'un nombre

Tout nombre décimal A peut s'écrire en notation scientifique :

$$A = a \times 10^n$$

- ➤ a est un nombre décimal ayant un seul chiffre non nul avant la virgule;
- \blacktriangleright *n* est un nombre **entier relatif**;
- ➤ *a* est appelée **mantisse** du nombre A.

Exemple

On considère le nombre A = 8 421 764.

- ➤ On aimerait déterminer l'écriture scientifique de A.
- ➤ On commence par écrire ce nombre avec une virgule placée après son premier chiffre : 8,421 764. Ce nouveau nombre obtenu n'est plus égal à A!
- ➤ On multiplie ensuite par 10⁶ pour décaler la virgule de six crans vers la droite et obtenir A.
- ➤ Ainsi l'écriture scientifique du nombre A est

$$8,421764 \times 10^6$$

Méthode 5 : obtenir l'écriture décimale d'un nombre

Donner l'écriture décimale des nombres suivants.

1
$$A = 1,07 \times 10^2$$

2 B=
$$2,567 \times 10^{-4}$$

3
$$C = 35.831 \times 10^{-5}$$

4 D=
$$-3 \times 10^{-2}$$

Corrigé

1 A= 1,
$$07 \times 10^2 = 107$$

2 B=
$$2,567 \times 10^{-4} = 0,000\ 256\ 7$$

3 C= 35 831
$$\times$$
 10⁻⁵ = 0,358 31

4 D=
$$-3 \times 10^{-2} = -0.03$$

on décale la virgule de 2 crans vers la droite

4 crans vers la gauche

5 crans vers la gauche

2 crans vers la gauche

Méthode 6 : obtenir l'écriture scientifique d'un nombre

Écrire chacun des nombres suivants en notation scientifique.

0
$$E = -12, 1 \times 10^{-6}$$

3
$$G = 34795 \times 10^{10}$$

2
$$F = 0.035 \times 10^9$$

4
$$H = 123 \times 10^4$$

Corrigé

0
$$E = -12, 1 \times 10^{-6} = -1,21 \times 10^{-6} \times 10^{1} = -1,21 \times 10^{-6+1} = -1,21 \times 10^{-5}$$

2
$$F = 0.035 \times 10^9 = 35\,000\,000 = 3.5 \times 10^7$$

3 G=
$$34795 \times 10^{10} = 347950000000000 = 3,4795 \times 10^{14}$$

$$\bullet$$
 H= 123 × 10⁴ = 1, 23 × 10⁶